DETECTION OF TETRACYCLINE IN NEW KINGDOM NUBIAN **REMAINS FROM TOMBOS: Beer or Microbes?**

Abagail Breidenstein¹, Michele Buzon², and Maureen Devlin¹

¹Department of Anthropology, University of Michigan, Ann Arbor, Michigan ²Department of Anthropology, Purdue University, West Lafayette, Indiana

INTRODUCTION

- ♦ Tetracycline is a broad-spectrum antibiotic produced by bacteria of the genus Streptomyces (Madigan, 2006); chelates calcium > labels bone growth

RESULTS

To positively detect the presence of tetracycline, we hypothesize the chemical will be incorporated at mid-shaft where the most bone turnover occurs in adult long bones due to max mechanical loading (Fig. 2).

DISCUSSION & CONCLUSIONS

- Analysis shows likely evidence for the presence of tetracycline in the diets of people living in Tombos over 3000 years ago
- implications in discerning health profiles gathered from the bioarchaeological record

- Previously detected in archaeological bone sections, possibly from contaminated grains used for beer & bread
 - Found Nubians and Egyptians from Roman Period to Christian Era (Basset, 1980, Farbits, 2008, Hummert & Van Gerven, 1982, Margolis et al,
- Source: airborne yeast or leftover malted grains > cooking or fermentation process stresses bacteria > produces tetracycline
- Positive detection contested as contamination from
 ubiquitous soil bacteria (Pipenbrink 1986, Keith & Armelagos et al, 1988)
- Contamination and diagenesis are true concerns; should be carefully investigated

Project Purpose:

Detect presence of tetracycline in Nubian skeletal remains from New Kingdom era Tombos using fragmentary femora and previously proven methods

Consumption of a broad-spectrum antibiotic has implications for health and disease status in ancient populations

MATERIALS

Palestine

Western

Thebes 9

Cataract Tombos

Nubia

Lower

- Fig. 2: Sectioning Justification; Individual 594 (10X), image of secondary osteons, i.e. evidence of remodeling at mid-shaft
- ♦ Eight individuals were assigned sex; other eight were too fragmentary (Table 2):
 - 3 Male, 3 Female, 1 Indeterminate (8 unknown)
- ♦ 14 individuals showed likely evidence of tetracyclinelabeled osteons (Table 2)

Table 2: Sample List with Results

Individual No.	Estimated Max. Femur Length [◊]	Estimated Sex	Tetracycline Presence*
641-122	*	-	Yes
641-123	448.61 mm	Male	Yes
641-132	439.67 mm	Indeterminate	Yes - Extensive
641-183	*	-	Yes
641-216	406.77 mm	Female	Yes
641-219	445.00 mm	Male	No
641-228	420.06 mm	Indeterminate	Yes
641-349	*	-	Yes - Moderate
641-350	399.02 mm	Female	Yes - Moderate
641-354	*	-	No
641-399	408.27 mm	Female	Yes
641-400	*	-	Yes
641-412	447.59 mm	Male	Yes - Moderate
641-594	*	-	Yes - Moderate
641-743	*	-	Yes
641-800	*	-	Yes

- Expect to see decrease in disease prevalence and/or
 A section of the **severity** > tetracycline is an effective therapeutic agent against various bacterial infections
- Commingled sample obscures any correlations between
 disease rates, severity, and progression; lacking context
- ♦ Despite small sample size, equal distribution of sex (3) males, 3 females), suggests no difference in the presence of the antibiotic
- All samples were adult, unable to make conclusions about age differences and presence of tetracycline
- Despite signals, still very possible it is diagenesis
 (microbial and chemical degradation of bone tissue)
 - ♦ Canaliculi, Canals of Volkmann, Haversian canals = means of egress into tissue when buried (see images below)
 - Microorganisms could be responsible for labeling osteons, burial context would have been aerobic

- Sample excavated from the Nubian archaeological site of Tombos, in modern day Sudan, (Fig. 1)
- \diamond New Kingdom colonial town (1,550 1,050 BCE), occupied through 3rd Int. and Napatan Periods; Egyptian imperialism
- Sample of commingled adult femura; most burials looted in antiquity; Nubians and Egyptians likely
- Individuals most likely belonged to the Upper middle class, ie. administrators or high class artisans > skeletal indicators of Fig 1: Map of Ancient Nile Valley relatively low activity levels found in intact burials (Schrader, 2012)
- All femura demonstrate various degrees of taphonomic damage and fractures; fragmentary
- 16 individuals were selected on the ability to section the femur diaphysis at an estimated mid-shaft

♦ Maximum Femur Length determined by Bidmos (2008, 2009) * Measurements incomplete, mid-shaft estimation with help from Dr. Kathleen Alsup Presence of tetracycline scored as positive if any intact osteons were fluorescent

Fig. 6: Evidence of possible diagenesis, 10X

- Sources of error:
- Sectioning methods bad adherence = fluorescence noise, thick sections obscured true fluorescence
- \diamond Small sample size (N=16), no negative control
- Commingled remains lack useful context

Further Directions:

- Extraction of tetracycline from bone samples, test efficacy
- ♦ Test associated soil samples (or available proxy for similar site) for tetracycline

ACKNOWLEDGEMENTS

My heartfelt thanks goes to my mentors at Michigan and Purdue for their time, advisement, and inspiration. I am also thankful for the work my colleague Maire Malone afforded me, especially for her help with equipment and expertise. Many thanks to my undergraduate aids during the project: Lily Shipp and Polly Washabaugh. I am also very grateful to the members of the Division of Anatomical Science: Dr. Kathleen Alsup for her help with estimating femur length when measurements failed and Dean Mueller for his aid with the special equipment required to complete this project. Finally, thank you to the Kingston Paleoecology Lab and Devlin Skeletal Biology Lab for use of lab space and specialized equipment.

To determine mid-shaft, remains were measured using standard femur landmarks (Steele 1969, Buikstra, Ubelaker 1994). Regression formulae used to determine maximum femur length range to estimate male, female, or indeterminate sex (Bidmos, 2008, 2009). Maximum femur length is the best estimator for sex determination in Tombos Nubian remains (Table 1):

Table 1: Determination of sex based on Maximum Femur Length

Females	< 410 mm	
Indeterminate	410 - 440 mm	
Males	> 440 mm	

10cm piece sampled from each individual, 5cm flanking midshaft. Samples were embedded in epoxy for thin sectioning. Samples were sectioned at 1mm slices across entire length for comparison of remodeling throughout 10cm sample. Sections were mounted with epoxy on slides, then ground and polished to ~100µm with an electric grinder. Tetracycline labeled osteons were viewed under ultraviolet light at 490nm with a Nikon Eclipse Ni-U Microscope.

Fig. 3: Examples of tetracycline-labeled osteons, 10X

viewing, 10X

Fig. 5:

found

endosteal

Comparison of

labeled osteons

cortical (A) and

surfaces (B), 10X

near

BIBLIOGRAPHY
Armelagos GJ, Kolbacher K, Collins K, Cook J, and Krafeld-Daugherty M. (2001). Tetracycline consumption in prehistory. In: Nelson M, Hillen W, and Greenwald RA, editors. Tetracyclines in Biology, Chemistry and Medicine. Basel, Boston, Berlin: Birkhauser Verlag. p. 219-236
Bassett EJ, Keith MS, Armelagos GJ, Martin DL, Villanueva AR. (1980). Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350). Science 209(4464):1532-4.
Bidmos, M. A. (2009). Fragmentary femora: evaluation of the accuracy of the direct and indirect methods in stature reconstruction. Forensic science international, 192(1), 131-e1.
Bidmos, M. A. (2008). Estimation of stature using fragmentary femora in indigenous South Africans. International journal of legal medicine. 122(4), 293-299.
Buikstra, J. E., & Ubelaker, D. H. (1994). Standards for data collection from human skeletal remains. Fayetteville: Arkansas Archaeological Survey Research Series, Number 44.
Fabsits T. (2008). Use of Antibiotics in Prehistory - The Prevalence of Tetracycline Labeled Osteons in Early Christian Populations of Sudanese Nubia (550-850 AD) [Dissertation]: Universitat Wien.
Hummert JR, and Van Gerven DP. (1982a). Tetracycline-Labeled Human Bone from a Medieval Population in Nubia's Batn el Hajar (550-1450 A.D.). Human Biology 54(2):355-371.
Keith M.S., and Armelagos G.J. (1988). An Example of In Vivo Tetracycline Labelling: Reply to Piepenbrink. Journal of Archaeological Science 15:595-601
Madigan, M, and Martinko, J. (2006). Brock Biology of Microorganisms (11th ed.). Upper Saddle River, NJ: Pearson Prentice Hall. Margolis IA, Van Gerven DP, and Armelagos GL (2013). Tetracycline labeling in early Christian burials from Kulubnarti. Nubia:
Measure of class differences. American Journal of Physical Anthropology Supplement 56, 2013(Annual Meeting Issue):189. Piepenbrink H. (1986). Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation. Journal of Archaeological Science 13(5):417-430
Schrader, S. A. (2012). Activity patterns in New Kingdom Nubia: an examination of entheseal remodeling and osteoarthritis at Tombos. American journal of physical anthropology, 149(1), 60-70.
long bones. American Journal of Physical Anthropology, 31(2), 215-227.